52 research outputs found

    Computational screening and design of traditional Chinese medicine (TCM) to block phosphodiesterase-5

    Get PDF
    [[abstract]]The traditional Chinese medicines (TCM), Epimedium sagittatum (ESs), Cnidium monnieri (CMs), and Semen cuscutae (SCs), were used for treating erectile dysfunction since the ancient Han dynasty (202 BC-AD 220). Phosphodiesterase-5 (PDE-5) is deemed the target protein for inhibition to treat erectile dysfunction. In this study, a reliable multiple linear regression (MLR) model (r value = 0.8484) was used to predict the activities of new candidates which were designed from ES, CM, and SC. From docking and pharmacophore analysis, the potent candidates among ES, CM, and SC were screened. SC01, SC03, and ES03b were predicted to have high potencies based on MLR analysis and high docking scores. Additionally, from our analysis, we make the follow conclusion (1) Hydrophobic compounds tend to be more potent PDE-5 inhibitors; (2) Because of the big binding site, inhibitors with molecular weights over 500 remain potent; (3) From the pharmacophore analysis, the features of hydrogen bond acceptors are the basis for designing novel inhibitors of PDE-5 and (4) According to MLR analysis, the number of ring groups could be up to 6, but the number of aromatic rings was limited to 4 to be potent. This study offers an alternative way to screen PDE-5 inhibitors from TCM and provides a scientific basis for confirming pharmacological actions of TCM. (C) 2009 Elsevier Inc. All rights reserved

    Weighted Equation and Rules - A Novel Concept for Evaluating Protein-Ligand Interaction

    Get PDF
    [[abstract]]In this study, a novel methodology for evaluating protein-ligand interaction and quantitated the traditional Chinese medicine (TCM) by Yin-Yang theory are proposed and investigated by a case report of the human epidermal growth factor receptor 2 (HER2)-ligand. Inhibitors (n = 176) of HER2 from references with a broad range of activities (IC50) were employed to the docking program to calculate the binding affinities. The docking score of twelve scoring functions versus actual pIC(50) plot were regressed. According to the weighted rules, the coefficient of determinations (R-2) from the regression analysis of each scoring function and pIC(50) were chosen as the weights in the weighted equation. The R-2 (0.5858) of weighted score (WS) versus actual pIC(50), was statistically higher than that of the consensus score (CS) (R-2 = 0.2441). The WS method lies in combining the scoring functions from different algorithms to evaluate the sum of binding affinities that is more comprehensive than any single scoring function can achieve. The WS calculated by equation successfully shows a statically significant correlation with good predictability. Thus, this methodology might provide a persuasive virtual screening criterion to evaluate the protein-ligand interaction and quantitative analysis of the functions for Chinese medicine in the future

    Virtual Screening and Drug Design for PDE-5 Receptor from Traditional Chinese Medicine Database

    Get PDF
    [[abstract]]Erectile dysfunction (ED) is a sexual disorder mainly caused by decrease in cellular concentration of cyclic guanosine monophosphate (cGMP), which is degraded by phosphodiesterase type-5 (PDE-5). As a potent therapeutic target, inhibitors such as Viagra (R), Cialis (R), and Levitra (R) have already been developed to target PDE-5 for treating ED; traditional Chinese medicine, Epimedium sagittatum. also has shown prominent results as well. To developed new PDE-5 inhibitors, we performed a virtual screening of traditional Chinese medicine (TCM) database and docking analyses to identify candidates. Known PDE-5 inhibitors were used to construct a three dimensional quantitative structure-activity relationship (3D QSAR) model by HypoGen program. From docking analyses, isochlorogenic acid b was identified as the most potential inhibitory compound. De novo evolution designed 47 derivatives. Of the 47 derivatives, seven were able to map into the pharmacophore model. and these seven compounds were suggested to be the most promising leads for inhibiting PDE-5. An analysis of the hydrogen bond interactions formed between the docked ligands and PDE-5 identified ASN662, SER663 and GLN817 as the most frequently interacting residues. A total of eight novel leading compounds were identified to have favorable interaction with PDE-5. These compounds all had hydrogen bond interactions with three key residues that could be further investigated for understanding of PDE-5 and ligands interaction

    Synthesis and Biological Evaluation of Phenanthrenes as Cytotoxic Agents with Pharmacophore Modeling and ChemGPS-NP Prediction as Topo II Inhibitors

    Get PDF
    In a structure-activity relationship (SAR) study, 3-methoxy-1,4-phenanthrenequinones, calanquinone A (6a), denbinobin (6b), 5-OAc-calanquinone A (7a) and 5-OAc-denbinobin (7b), have significantly promising cytotoxicity against various human cancer cell lines (IC50 0.08–1.66 µg/mL). Moreover, we also established a superior pharmacophore model for cytotoxicity (r = 0.931) containing three hydrogen bond acceptors (HBA1, HBA2 and HBA3) and one hydrophobic feature (HYD) against MCF-7 breast cancer cell line. The pharmacophore model indicates that HBA3 is an essential feature for the oxygen atom of 5-OH in 6a–b and for the carbonyl group of 5-OCOCH3 in 7a–b, important for their cytotoxic properties. The SAR for moderately active 5a–b (5-OCH3), and highly active 6a–b and 7a–b, are also elaborated in a spatial aspect model. Further rational design and synthesis of new cytotoxic phenanthrene analogs can be implemented via this model. Additionally, employing a ChemGPS-NP based model for cytotoxicity mode of action (MOA) provides support for a preliminary classification of compounds 6a–b as topoisomerase II inhibitors

    Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine

    Get PDF
    The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine. Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well. Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics (MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Identification of Potent EGFR Inhibitors from TCM Database@Taiwan

    Get PDF
    Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858) and SVM (r² = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q² = 0.721, r² = 0.986) and CoMSIA (q² = 0.662, r² = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    In Silico Investigation of Potential Src Kinase Ligands from Traditional Chinese Medicine

    Get PDF
    Src kinase is an attractive target for drug development based on its established relationship with cancer and possible link to hypertension. The suitability of traditional Chinese medicine (TCM) compounds as potential drug ligands for further biological evaluation was investigated using structure-based, ligand-based, and molecular dynamics (MD) analysis. Isopraeroside IV, 9alpha-hydroxyfraxinellone-9-O-beta-D-glucoside (9HFG) and aurantiamide were the top three TCM candidates identified from docking. Hydrogen bonds and hydrophobic interactions were the primary forces governing docking stability. Their stability with Src kinase under a dynamic state was further validated through MD and torsion angle analysis. Complexes formed by TCM candidates have lower total energy estimates than the control Sacaratinib. Four quantitative-structural activity relationship (QSAR) in silico verifications consistently suggested that the TCM candidates have bioactive properties. Docking conformations of 9HFG and aurantiamide in the Src kinase ATP binding site suggest potential inhibitor-like characteristics, including competitive binding at the ATP binding site (Lys295) and stabilization of the catalytic cleft integrity. The TCM candidates have significantly lower ligand internal energies and are estimated to form more stable complexes with Src kinase than Saracatinib. Structure-based and ligand-based analysis support the drug-like potential of 9HFG and aurantiamide and binding mechanisms reveal the tendency of these two candidates to compete for the ATP binding site

    The Advancement of Biomaterials in Regulating Stem Cell Fate.

    Get PDF
    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles

    Concentration profile of MeV Ni+ ions in LiNbO3 and KTiOPO4 determined by SIMS

    No full text
    LiNbO3, and KTiOPO4 were implanted with 2.0 MeV Ni+. ions at several incident angles and a fluence of 8 x 10(14) ions/cm(2) The concentration profiles of implanted Ni+ were measured by secondary ion mass spectrometry (SIMS). The experimental Ni+ concentration profiles are compared with the Pearson IV and TRIM'90 (Transport of Ions in Matter 1990) simulations. The correlation between the profiles of Ni+ concentration and refractive index is discussed for LiNbO3 and KTiOPO4 waveguides. (C) 2000 Published by Elsevier Science Ltd
    corecore